Discovery of Structural Regularity Hidden in Silica Glass

Glass is a fundamental material. Yet the disordered structure of its atomic configuration still baffles scientists, making understanding and controlling its structural nature challenging. It also makes it difficult to design efficient functional materials made from glass.

Glass - whether used to insulate our homes or as the screens in our computers and smartphones - is a fundamental material. Yet, despite its long usage throughout human history, the disordered structure of its atomic configuration still baffles scientists, making understanding and controlling its structural nature challenging. It also makes it difficult to design efficient functional materials made from glass.

To uncover more about the structural regularity hidden in glassy materials, a research group has focused on ring shapes in the chemically bonded networks of glass. The group, which included Professor Motoki Shiga from Tohoku University's Unprecedented-scale Data Analytics Center, created new ways in which to quantify the rings' three-dimensional structure and structural symmetries: "roundness" and "roughness."

Using these indicators enabled the group to determine the exact number of representative ring shapes in crystalline and glassy silica (SiO2), finding a mixture of rings unique to glass and ones that resembled the rings in the crystals.

Read the full news (external link)